经过盛唐的大发展,唐中叶之后,生产关系和社会各方面逐渐产生新的实质性变革,到10世纪下半叶,赵匡胤建立宋朝,统一中国,中国封建社会进入一个新的阶段,土地所有制以国有为主变为私有为主,租佃农民取代了魏唐的具有农奴身份的部曲、徒附。农业、手工业、商业和科学技术得到更大发展。中国古代四大发明,有三项——印刷术之广泛应用及活字印刷,火药用于战争,指南针用于航海——完成于唐中叶至北宋。宋秘书省于元丰七年(公元1084年)首次刊刻了《九章算术》等十部算经(时《夏侯阳算经》、《缀术》已失传,因8世纪下半叶一部韩延《算术》开头有“夏侯阳曰”云云而误认为是前者而刻入,后者只好付之阙如),是世界上首次出现的印刷本数学著作。后来南宋数学家鲍澣之翻刻了这些刻本,有《九章算术》(半部)、《周髀算经》、《孙子算经》、《五曹算经》、《张丘建算经》五种及《数术记遗》等孤本流传到现在,是目前世界上传世最早的印刷本数学著作。宋元数学家贾宪、李冶、杨辉、朱世杰的著作,大都在成书后不久即刊刻。数学著作借助印刷术得以空前广泛的流传,对传播普及数学知识,其意义尤为深远。
宋元数学高潮早在唐中叶已见端倪。随着商业贸易的蓬勃发展,人们改进筹算乘除法,新、旧《唐书》记载了大量这类书籍,可惜绝大多数失传,只有韩延(生平不详)《算术》(8世纪)以《夏侯阳算经》的名义流传下来,该书提出了若干化乘除为加减的捷算法,并在运算中使用了十进小数,极可宝贵。
11世纪上半叶贾宪(生平不详)撰《黄帝九章算经细草》,是为北宋最重要的数学著作。贾宪曾任左班殿直(低级武官),是当时著名天文学家、数学家楚衍的学生。还著有《算法[学攴]古集》二卷,已佚。他将《九章算术》未离开题设具体对象甚至数值的术文大都抽象成一般性术文,提高了《九章算术》的理论水平;他对某些类型的数学问题进行概括,比如提出开方作法本源即贾宪三角,作为他提出的立成释锁(即开方)法的算表,这是开方问题的纲;他提出了若干新的重要方法,其中最突出的是创造增乘开方法,并提出了开四次方的程序。贾宪的思想与方法对宋元数学影响极大,是宋元数学的主要推动者之一。《黄帝九章算经细草》因被杨辉《详解九章算法》抄录而大部分保存了下来(阙卷一、二及卷三上半部,卷五的一部分)。
大科学家沈括(公元1031—1095年)对数学有独到的贡献。在《梦溪笔谈》中首创隙积术,开高阶等差级数求和问题之先河,又提出会圆术,首次提出求弓形弧长的近似公式。
12世纪北宋刘益(生平不详)撰《议古根源》,亦失传。杨辉《田亩比类乘除捷法》引用了它的若干题目与方法。《缀术》失传之后,开方式的系数仍皆为正数,刘益突破了这个限制,首先引入负系数方程,并创造了益积开方术与减从开方术求其正根,杨辉誉之为“实冠前古”。
1127年金朝入主中原,赵宋南迁,史称南宋。1234年,蒙古贵族灭金,后来建立元朝。1279年元灭南宋,统一全国。13世纪中叶至14世纪初,是宋元数学高潮的集中体现,也是中国历史上留下重要数学著作最多的半个世纪,并形成了南宋统治下的长江中下游与金元统治下的太行山两侧两个数学中心。
南方中心以秦九韶、杨辉为代表,以高次方程数值解法、同余式解法及改进乘除捷算法的研究为主。北方中心则以李冶为代表,以列高次方程的天元术及其解法为主。元统一中国后的朱世杰,则集南北两个数学中心之大成,达到了中国筹算的最高水平。
1247年秦九韶撰成《数书九章》18卷。秦九韶,字道古,自称鲁郡(今山东省)人,约1202年生于普州安岳县(今四川省)。他生活在宋元激烈斗争的南宋末年,并卷入了南宋统治集团战和两派的斗争,支持抗战派吴潜,屡遭刘克庄等人弹劾。贾似道专权后被贬到梅州(今广东省),不久(约公元1261年)死于任所,并在死后被追随贾似道的周密丑诋不堪。他天资聪明好学,对数学、天文、土木建筑、诗词、音律、弓马等都十分精通。他多次呼吁统治者施仁政,并把数学知识看成开源截流、施仁政、利国利民的有力工具。《数书九章》分大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易九类81题,其成就之大,题设之复杂都超过以往算经,有的问题有88个条件,有的答案多达180条,军事问题之多也是空前的,反映了秦氏对抗元战争的关注。大衍总数术系统解决了一次同余式组解法;正负开方术把以增乘开方法为主导的求高次方程正根的方法发展到十分完备的程度,有的方程高达十次;线性方程组解法完全以互乘相消法取代直除法;提出了与海伦公式等价的三斜求积公式;使用了完整的十进小数表示法,等等,都是其杰出成就。
杨辉共撰五部数学著作,传世的有四部,居元以前数学家之冠。杨辉,字谦光,钱塘(今杭州市)人,生平不详,只知在今江浙一带管钱粮,为政清廉。与其他大家比较,他的著作偏重于教育与普及。1261年,杨辉在刘徽注、李淳风等注释、贾宪细草的《九章算术》基础上作解题、比类,并补充了图、乘除、纂类三卷,是为《详解九章算法》,今图、乘除、方田、粟米、衰分上半部、商功之一部分已佚。商功章的比类中的垛积术发展了沈括的隙积术;“纂类”则打破了《九章算术》的分类格局,按方法分成乘除、互换、合率、分率、衰分、叠积、盈不足、方程、勾股九类。1262年又撰《日用算法》,着重于改进乘除捷算法,只有少量题目保存下来。1274年撰《乘除通变本末》三卷。卷上的“习算纲目”是一个从启蒙到《九章》主要方法的数学教学计划。本书还总结了九归等乘除捷算法及其口诀。次年编纂《田亩比类乘除捷法》二卷,引用了刘益的方法与题目,批评了《五曹算经》四不等田求法的错误。同年,编纂《续古摘奇算法》二卷,对纵横图即幻方研究颇有贡献。后三部书又常合称为《杨辉算法》。
十二、十三世纪,北方出现了许多天元术著作,大都失传,流传至今的最早的以天元术为主要方法的著作是李冶的《测圆海镜》12卷(公元1248年)、《益古演段》三卷(公元1259年)。李冶(公元1192—1279年),字仁卿,号敬斋,真定栾城(今河北省)人,生于大兴(今北京市)。其父为官清廉正直,李冶自幼受到良好的教养,且爱好数学,青年时便成为名重中原的学者,金词赋科进士。入元,遂隐居于忻、崞〔guo郭〕(今山西省北部)一带,在极为艰苦的条件下研究数学及各种学问,常粥饘〔zhan毡〕不继,而聚书环堵。1251年起,主持封龙书院(今河北省)。1257、1260年两次受到元主忽必烈召见,发表了立法度,正纲纪,进君子,退小人,减刑罚,止征战,反对种族偏见的政治主张。他被聘为翰林学士。然而他羞于作唯天子、宰相之命是听的御用文人,不久便以老病为辞回到封龙山。他一生文史著述颇多,仅存《敬斋古今黈》。《测圆海镜》在洞渊九容基础上考虑了勾股形与圆的10种基本关系,在卷二一十二中就15个勾股形与圆的关系提出了170个求圆径长的问题,答案当然都相同。这些问题大都要用天元术列出方程。卷一是全书的理论基础,包括圆城图式、识别杂记等部分。圆城图式以天、地、乾、坤等汉字表示点,是个创举。识别杂记提出692条公式,除八条外都是正确的,集历代勾股形与圆的关系研究之大成。《益古演段》64问,这是一部用天元术阐释蒋周(可能是北宋人)《益古集》的方程列法的著作。其中保存了《益古集》的若干题目和旧术(方法)。
朱世杰有两部重要著作《算学启蒙》(公元1299年)、《四元玉鉴》(公元1303年)传世。朱世杰,字汉卿,号松庭,燕山(今北京市)人,生平不详。他在13世纪末以数学名家周游全国20余年,向他学习数学的人很多。《算学启蒙》20门,259问,包括了从乘除及其捷算法到增乘开方法、天元术等当时数学各方面的内容,形成了一个较完整的体系。《四元玉鉴》24门,288问,卷首给出古法七乘方图(改进了的贾宪三角)等四种五幅图,以及天元术、二元术、三元术、四元术的解法范例。创造四元消法,解决了多元高次方程组问题,以及高阶等差级数求和问题,高次招差法问题,是本书最大的贡献。此书是中国古代水平最高的数学著作。
杨辉、朱世杰等人对筹算乘除捷算法的改进、总结,导致了珠算盘与珠算术的产生(大约在元中叶),完成了我国计算工具和计算技术的改革。元中后期,又出现了《丁巨算法》、贾亨《算法全能集》、何平子《详明算法》等改进乘除捷算法的著作。
|