首页 -> 2007年第10期

浅谈数学建模思想在大学数学教学中的应用

作者:段 勇 傅英定 黄廷祝




  摘 要:本文探讨了在大学数学教学中贯穿数学建模思想的教学方法,从人才培养、科学研究、市场需求以及研究型教学三个方面阐述了该方法的重要性,并结合电子科技大学的情况提出了一些实施办法。
  关键词:大学数学教育;数学建模;研究性教学
  
  数学建模是利用数学思想去分析实际问题,建立相关模型并求解以解决实际问题的综合运用,在我国,由教育部和中国工业与应用数学学会(CSIAM)联合组织了全国大学生数学建模竞赛,在过去的15年里取得了社会各界的广泛认同和辉煌的成绩。作为以工科(特别是电子信息科学)为主导的大学,电子科技大学的各级领导也十分重视数学建模的作用,以期使得学校的各个学科能交相呼应,取得共同的发展。在数学建模所取得的优秀成绩和作为国家工科数学基地的基础上,我们希望能将数学建模的思想更广泛地融入大学数学教育当中,使得学生在学习到数学知识的同时,也会运用学习到的知识去分析及解决实际问题。
  
  一、在大学数学教学中贯穿数学建模思想的必要性
  
  1.科学研究的需要
  实际上,数学本身就是产生于对实际问题的分析及抽象化,文艺复兴之后,特别是微积分理论建立之后,对现实世界中的很多问题都可以通过适当的分析并建立模型,比如用MAXWELL方程组描述电磁学基本规律,Navier-Stokes方程为流体力学基本方程等,在适当的条件下(原问题为适定问题)利用计算机模拟便可以给出实际问题的解答。经过多年的发展,目前这种方法被成功应用于各个行业,是科学研究的一门基本工具。比如:
  (1)天气和气候预报。气候变暖是目前全球面临的一个重要挑战,如果有更精确的数据为依据,较好地预测全球气候是如何变化的,就可以减少长期气候变化的不确定性和各种自然灾害对人们造成的损失和影响。要达到如此的精确就意味着要能用天气预报对全球进行正确的预测,这在目前还是不可行的,因为这需要存储海量的数据,需要超长的计算时间。因此,建立更有效的数学模型和提高计算性能便成为这一领域的核心问题。
  (2)机械设计和交通控制。从有科学计算的早些日子开始,计算模式就已经用于飞行器元件的性能分析和设计,比如飞机起降分析和机翼推力设计等。当计算变得更为有力和计算机功能变得更强大时,计算模拟已被用作整个设计过程中的必须工具。例如,波音777是第一种100%数字设计的喷气式飞机,三维立体建模贯穿整个设计过程,飞机在电脑上预装配,节约了全面装配所需的巨额花费。在其他的机械系统设计过程中,比如机车,机器或机器人设计,计算机辅助设计(计算机模拟来观测系统设计中的动态反应)已成为标准的处理方法。因为这可以大大减少构造和测试原型的需要。模拟技术不仅仅用来提高性能,也用来提高安全性和人类居住环境。由于操作者和硬件方面的限制,实时模拟目前面临的实际挑战是模型,算法和软件的限制。这种情况在我国的城市交通路网管理上也已凸现。随着模拟能力的提高(比如用在内燃机设计中的燃烧数字模拟技术),数学建模和求解将在整个设计和分析过程中扮演越来越重要的角色。
  (3)电子设计自动化。电子设计自动化和计算模拟早已有着共生的关系。现代电子系统(大多数显然是微处理器)是极端复杂的。开发这样的系统只有也惟有在建模和计算工具的帮助下才有可能,用这种方法来模拟和验证系统设计过程中的每个部分。建模和计算在各种层次的电子设计中起着重要作用,从模拟制造半导体设备的各个过程,到模拟和验证微处理器系统的计算机电路或设计超大规模集成电路。
  (4)生物科学。模拟技术现在对生物和医学科学正快速的变得不可或缺。模拟在医学设各的发展中有重要作用,包括诊断(电磁,超声波等)和人造器官设计(心脏,肾等)等。生物医学光学主要依赖计算建模来检测和治疗。数学建模在把数学和生物学融合进基因科学(基因组测序,基因表达的定型,基因分类等)中起着基本作用。在这个领域需要大规模的模拟,建立复杂的数学模型,并用来发展新的理论/概念模型和理解分子水平的相互作用。
  (5)材料科学。材料研究是发明新材料,制造和加工已有的材料使其更加完美,让它们有我们想要的性能和环境反应。比如,对薄膜,有很多新的重要的应用,包括基于硅的微电子学,化合物半导体,光电设备,高温超导体和光电系统,这种薄膜的制造对很多因素都是极为敏感的,生产过程可通过各种处理完成,比如化学蒸发和沉积(Chemical Vapor Deposition)。模拟是在理解这个过程时的基本工具,这要求用到先进的数学模型和计算技术。近年来,大规模复杂计算建模已经被用于设计高压,高吞吐量的化学蒸发和沉积(CVD)反应器。为生产新型材料提供设各。
  数学建模及计算在科学探索中也很重要,比如在天体物理学,量子力学,相对论,化学和分子生物学,以及实验起来太困难和花费太大的等各种科学研究领域,计算建模都逐渐成为重要的研究方法。总之,绝大多数科学性学科都从数学建模中获益。事实上,新的发现和模拟技术本身的不断发展,已经形成了在科学研究中,以模拟,实验和理论作为科学研究的基本模式。
  
  2.人才市场的需要
  在过去的十年间,信息和计算技术已成为带动全球经济增长的主要因素之一。美国自然科学和技术理事会不只一次的提到过,工业和自然科学实验室关心的是,他们早已不能满足大量增长的信息与计算技术培训的需求。另外,联邦部门,比如能源部的先进战略加速计算部门(ASCI)和信息技术指导部都依赖于既有科学知识又具有计算知识的职员。这么多人对计算教育的需求是过去十年计算机处理能力的持续增长和计算机价格的不断下降的共同结果。现在的学生能在计算机上玩电脑游戏,而十年前都认为这种性能的计算机只可能出现在政府部门的实验室里。
  计算机现在已经渗透到我们日常工作和生活的方方面面,并且影响着人才市场需求。这就需要把一些人放在要求的知识超出自身所受教育的岗位上。相应的,具有多种知识和专业技能可以提高一个人的市场竞争能力和获得更多的工作机会。雇主愿意选择这些受过多种课程教育的雇员,这意味着他们可以雇少量的人员,而这些人员可以长时间的胜任相应的工作。但是,要具有多种学位的话,不但花费昂贵,并且由于选修多门课程,还要耗费大量时间用于学习。相对地,由于这些要求或工作的一大共同点是(用数学思想)分析问题并建立模型(用计算机)求解,因此将数学建模的思想融入课堂教学可以为这些学生节约时间和金钱,可以培养他们用数学方法解决实际问题的素养和兴趣,学生们积极参与其中,比他们仅仅是接受知识会学得更好,可以把原本不太投入的学生转化成积极活跃主动的学习者,可以更好的胜任今后的各种工作岗位。
  
  3.研究性教学的需要
  虽然“数学建模”课程的教学已开展多年并于2006

[2]