首页 -> 2007年第8期

数学建模:高职数学教改的突破口

作者:徐志科




  摘要:本文分析了高职院校开展数学建模教育的原因,讨论了在高等职业教育的数学教育中融入数学建模内容的必要性、可行性与实现的途径,并根据教学实践,介绍了在高等数学教学中渗透数学建模思想的一些实践与认识,并提出了要注意的几个问题。
  关键词:高等职业教育;数学教育;数学建模
  
  高职数学教育的目的不仅是为学习专业课打基础,更重要的是培养和学习数学思维。高职数学教改必须重视转变数学教师的教育教学观念,改善其知识结构,树立“把提高学生的数学素质作为数学教学的灵魂”的理念。正因为如此,数学科学中的一个新的具有极大生命力的分支——数学建模,应运而生并得到迅速的、极大的发展。
  数学建模进行数学教育的思想方法是:从若干实际问题出发——发现其中的规律——提出猜想——进行证明或论证。数学建模要求学生结合计算机技术,灵活运用数学的思想和方法独立地分析和解决问题,不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风。将这样一种思想引入数学教育中,对提高学生学习数学理论的积极性和主动性,提高学生的数学素质,培养学生应用数学的意识和能力,具有十分重大的现实意义和理论意义。
  
  高职教育开展数学建模的原因
  
  目前人们对高职数学教育存在许多片面认识,使高职数学教改举步维艰,无论是课程内容,还是教学思想、方法和手段,基本上承袭了普通教育方式,脱离了高职教育的目标要求和相应的专业需要。主要表现在:(1)教学内容重古典、轻现代,重连续、轻离散,重理论、轻应用;(2)教学方式和方法重演绎而轻归纳,教师采用“填鸭式”的教学,启发思维少,课堂信息量小,学生处于被动状态,主体作用得不到发挥;(3)教学模式重统一、轻个性,过分强调教材、教学要求和教学进度的统一,缺乏层次性、多样化,不能很好地适应不同专业、不同培养规格的要求;(4)考试内容单一,偏重于理论和繁琐计算的考察,忽视数学应用和知识引申的考察,不能反映出学生真正的数学水平;(5)现代辅助教学手段应用不广泛,大多数教师的教具还停留在粉笔加黑板上,教学的直观性、趣味性不强,教学效果不理想;(6)数学教学与其他教学的协调不够,与其他学科不能充分地相互补充。这些问题的存在,不但影响了学生学习数学的积极性,更主要的是影响了后继课程的学习,不利于应用型人才的培养。这些都反映出数学教改的迫切性。审视当前我国的高职数学教育,寻找其改革的出路和对策是十分必要的。
  解决这些问题的有效的方法是在高等职业教育的数学基础课程中,增加数学建模的训练。数学建模既提供了一些新的教学内容,又提供了一些新的教学方法和环节,强调了学生在教学过程中的主观能动性与共同参与意识的培养,改变了由教师单项传输的教学模式。因此,以数学建模教育为高职数学教学改革的切入点,有助于提高高职生的数学素质,培养创新型人才。
  
  可行性与实现途径
  
  在高等职业教育阶段对学生进行数学建模思想与方法的训练,有两种途径:第一是开设数学建模课,这个途径受到时间的限制,对于高等职业教育更是如此,由于学制短,分配给数学课程的时数较少,这对于我们要做的事情来说是非常不够的;第二个途径就是将数学建模的思想和方法有机地贯穿到传统的数学基础课程中去,使学生在学习数学基础知识的同时,初步获得数学建模的知识和技能,为他们日后用所学的知识解决实际问题打下基础。将数学建模的思想和方法融入高职数学教学中,是一种非常适合我国高等职业教育实际的一种教育方法,原因有二:
  其一,数学区别于其他学科的明显的特点之一是它的应用的极其广泛性(另两个特点是抽象性和精确性),宇宙之大,数学无处不在。目前我国高职教育的几乎所有专业都开设了微积分课程,还有许多专业开设了线性代数、概率论初步等课程。课程内容的广度和深度虽不及本科教育,但也可以解决许多实际问题,因为许多模型,如银行存款利率的增加、人口增长率、细菌的繁殖速度、新产品的销售速度,甚至某些体育训练问题等等,用数学知识就可以解了。所以在高职教育现有的数学基础课的某些章节中插入数学建模的内容,有着非常丰富的资源。
  其二,比较本科教育而言,高等职业教育更注重实用性,而不强调理论的严谨性。这使得我们在进行数学教育的改革时,拥有较大的优势和灵活性。在高职数学基础课中融入数学建模的内容时,可以对原有的教学内容作适当的调整,如只讲本专业课需要用到的内容,删除某些繁琐的推导过程和计算技巧等等。对于大多数的计算问题,包括求极限、求导数、求积分,都可以用Mathematica、Matlab等数学软件直接在计算机上得出结果。这样一来,可以有效地解决增加数学建模内容而不增加课时的矛盾。比如说,一元函数微积分中,不定积分的计算方法灵活多样,技巧性强,几种常用的积分法的教学要好几个课时,学生课后也要花费大量的时间做练习,负担过重。如果在积分的教学中删除这些计算,只讲一些积分的性质,积分的基本思想和应用,在增加数学建模训练的同时,又提供一些使用计算机解题的训练,把宝贵的时间用在学习解决实际问题上,就是一个非常好的方案。对高职学生来说,有些东西没有必要一步一步严格地学习,有时采用渗透式的学习方法可能更有成效。
  
  在教学中渗透数学建模思想的实践初探
  
  高等数学中的函数、向量、导数、微分、积分都是数学模型,但在教学中也要选择更现实、更具体,与自然科学或社会科学等领域关系直接,同时有重大意义的模型与问题,这样的题材能够更有说服力地揭示数学问题的起源和数学与现实世界的相互作用,体现数学科学的不断发展,激发学生参与探索的兴趣,培养学生学习数学、应用数学的意识。
  重视高等数学中每一个概念的建立数学本身就是研究和刻画现实世界的数学模型。在教学中,每引入一个新概念或开始一个新内容,都应有一个刺激学生学习欲的实例,说明该内容的应用性。在每一章节结束时,列举与本章内容相联系的,与生产、生活实际和所学专业结合紧密的应用实例。这样在讲授知识的同时,可让学生充分体会到高等数学的学习过程也是数学建模的过程。
  重视函数关系的应用建立函数模型在数学建模中非常重要,因为用数学方法解决实际问题的许多例子首先都是建立目标函数,将实际问题转化为数学问题。在这一章中要重点介绍建立函数模型的一般方法,掌握现实问题中较为常用的函数模型。
  重视导数的应用 利用一阶导数、二阶导数可求函数的极值,利用导数求函数曲线在某点的曲率在解决实际问题中很有意义。在讲到这些章节时,适当向数学建模的题目引申,可以收到事半功倍的效果。例如,传染病传播的数学模型的建立,就用到了导数的数学意义(函数的变化率);经济学中的边际分析、弹性分析、征税问题的例子都要用到导数。总之,在导数的应用这章中,适当多讲一些实际问题,能培养学生用数学的积极性。
  充分重视定积分的应用定积分在数学建模中应用广泛,因此,在定积分的应用这章中,微元法以及定积分在几何物理上的应用,都要重点讲授,并应尽可能讲一些数学建模的片段,要巧妙地应用微元法建立积分式。
  重视二元函数的极值与最值问题求二元函数的极值与条件极值,拉格朗日乘数法,以及最小二乘法在数学建模中有广泛的应用。在教学过程中,应注意培养学生用上述工具解决实际问题的能力。利用偏导数可以对经济学许多问题作定性和定量分析。例如,经济分析中的边际分析,弹性分析,经济函数的优化问题中的成本固定时产出最大化,产出一定时成本最小化等都可以用偏导数来讨论。
  

[2]