第六节 中外数学交流





  南北朝和隋唐时期,随着佛教的流传,印度的一些天文学和数学著作也传入中国,并且有了中文译本。《隋书·经籍志》著录有《婆罗门算法》3卷,《婆罗门阴阳算历》1卷,《婆罗门算经》3卷,但这些书早就失传了,现已无法查考其具体内容。唐代还有一些印度天文学家在当时的司天监工作,主要有瞿昙、迦叶和俱摩罗三家,尤以瞿昙家族的成就最为突出。如著名天文学家瞿昙悉达,曾担任过太史监等官职,编撰有《开元占经》120卷。在这部书所收的《九执历》中,他所介绍的印度数学知识有印度数码,如用9个数码符号表示9个数字,用点表示空位或零,但该书仅用方框表示而没有写出这9个数码的具体写法,以致印度数码未能在中国流传下来。印度数码亦于中世纪传入阿拉伯国家,后又传入欧洲,经过书写形式上的演变,从而形成了现在世界通用的印度—阿拉伯数码。瞿昙悉达介绍的印度数学知识还有圆弧量法、间隔为3°45′的正弦函数表等。其圆弧量法是把圆周分为360度,每度分为60分,与古希腊人的弧度量法相同,而与中国古代天文学家把周天分为度不同。但是,这些较先进的印度天36514文算法,与中国传统的算法体系难以协调,中国学者中具有代表性的看法是“其算皆以字书(笔算),不用筹策。其术繁碎,或幸而中,不可以为法。名数诡异,初莫之辩也”①。因而这些内容都没有被中国数学家和天文学家所采用。传入中国的印度数学,后来仅有大数记法与小数记法,对中国数学有所影响,如元代数学家朱世杰《算学启蒙》中的“极”、“恒河沙”、“无量数”、“虚”、“空”、“弹指”等大数与小数名称,都来自佛教经典。另一方面,在钱宝琮主编的《中国数学史》中,列举了十进位值制记数法、四则运算、分数、三率法、弓形面积与球体积、联立一次方程组、负数、勾股问题、圆周率、重差术、一次同余组、不定方程问题、开方法和正弦表的造法等14项数学内容,用以说明有些与中国数学极其相似的问题和算法,后来又出现在印度的数学著作中,因此印度数学的这些内容很可能受到了中国数学的影响。当然这还需要寻找更确切的证据,中印数学之间的关系是一个值得深入探讨的课题。

  中国与朝鲜、日本之间的文化交流,源远流长。中国数学是朝、日两国早期数学发展的基础,其影响之大是可想而知的。在朝鲜,据《三国史记》记载,新罗早在七至八世纪,便曾在“国学”(相当于中国的国子监)内设立算学科,置“算学博士若助教一人,以《缀经》、《三开》、《九章》、《六章》教授之”①。其中所说《缀经》,当是祖冲之《缀术》,《九章》即《九章算术》,而《三开》、《六章》为何书则在我国古籍中未见记载。总的来说,其数学教育制度与所用教材,均与唐朝国子监算学馆相类似。十至十四世纪的高丽王朝也建立了类似的制度。他们还多次派人来华采购各种书籍,其中也包括数学书籍。在日本,早在公元三世纪,日本就开始吸收中国的数学知识,而从六七世纪日本的飞鸟、奈良时代起,中国的历法和数学就更多地直接或经由朝鲜间接地传入日本。日本于八世纪初设立学校,讲授数①《新唐书》卷二八《历志》四下。

  ①金富轼:《三国史记》卷三八《职官》上。

  学,据日本养老二年(718)公布的《养老令》及其释义书《令义解》(833)记载,可知当时所用教材有《孙子》、《五曹》、《九章》、《海岛》、《六章》、《缀术》、《三开》、《重差》、《周髀》、《九司》等十部算书。其教职人员的设置、学生人数、学习内容和考试方法等也与唐朝国子监算学馆的制度相类似。宽平年间(889—897)藤原佐世奉敕编撰《日本国见在书目》,记录了当时在日本可以见到的各种书籍。在其中的“历数家”一门中,除记载了《周髀》、《九章》等秦汉以来的算书外,还记录了《六章》、《三开》等见于朝鲜书目的算书,此外也还有一些中国和朝鲜厉代书目都未载而仅见于日本的算书,如《九章私记》、《六章私记》、《新集算例》、《元嘉算术》、《要用算例》、《五行算术》等。这些著作中有些是中国人的作品,有些则可能是日本数学家在中国数学影响下而自行创作的作品。日本在相当长的时期内直接行用中国历法,如《元嘉历》、《麟德历》、《大衍历》和《宣明历》等,这些历法中所包含的数学方法加二次插值法等自然也相应地传入了日本。