应天故事汇 > 名人传记 > 情有独钟 >  上一页    下一页
四一


  两个体系之间的最大区别可能依然存在,对它们的功能还得作一些了解。玉米转座的主要意义在于它的调节功能。麦克林托克管她的转座因子叫“控制因子”。因为它们所起的是调节自己的和邻近基因功能的作用。她揭示了它们具有调节遗传作用的精确时间的能力——它们是按照一张时间表进行的。这张时间表部分由控制因子出现的数量决定。细菌转座并不是难以捉摸的。插入因子可能打开和关闭基因,但甚至在这以后,它的作用仍由它们插入的方向来决定,它们只是通过参加破坏遗传顺序的正常机能而起作用的,这一看法毋庸置喙。

  在细菌中所发现的最接近“控制因子成分”的因子可能是沙尔门氏菌的“来回转向”开关。早就知道这种细菌能交替产生两种细菌鞭毛。一九七八年,这个使得产生从一个到另一个改变的开关,作为能周期性地改换它的方向的特殊的顺序,被识别出来。在一个方向上,开关“打开”,产生了一种鞭毛;在另一个方向上,开关“关闭”,产生了另一种鞭毛。但甚至有了这样惹人注目的调节例子,也不能从对细菌的研究中推断出任何有意义的发展。大多数研究人员依然怀疑任何形式的转座能否这样来归结。总之,转座基本上被看作一种异常的现象——它在进化上可能举足轻重,但决没有想到它会同组织的发育有牵连。

  没有人比麦克林托克自己更清楚她和她同行们之间的区别了。在某种程度上,区别反映了她自己和他们对遗传学的兴趣不一致。她主要的兴趣在于机能和组织,而他们主要的兴趣在于机制。但同时,那部分反映了所研究的生物的区别。细菌如大肠杆菌和沙尔门氏菌没有发育周期,而较高等的生物是有发育周期的。因此,直到生物学家开始注意到真核系统,并在其中发现同样的现象,转座的重要意义才被人们所认识,那就不足为奇了。

  虽然,梅尔文·格林早已报道了与果蝇的发育有关的转座证据,酵母是因展示这样的作用而引起广泛注意的第一种较高等的生物。与性的补体作用相对应的两个不同的发育阶段,表明是从两个基因中的一个物理插入第三个位点(交配位点)而造成的,是由基因组上不同的位置造成的。在最近几年里,杰拉尔德·芬克和他的合作者所进行的研究,表明酵母和玉米是非常相似的:它们在某一位点上不稳定的突变体是控制氨基酸组氨酸的合成的。芬克体系和麦克林托克称为Spm的体系(起抑制-诱变作用)是如此全面的相似,使得芬克在他自己的体系里采用了和麦克林托克体系同样的名称。在玉米里,Spm体系有两个因子:第一个(“接受器”)插入或靠近一个基因,引起一个突变表型;第二个(“调节器”),一般远离上述基因,控制和调节第一个因子的活动。调节因子同时控制两者,第一个因子抑制(或增强)在调节因子或者附近基因的作用(抑制活动),也抑制第一个因子(增变活动)的切除频率。酵母Spm体系是同样类型的,但芬克很小心地补充说,名称相同,并不表明机制也相同。

  在进化的梯级上稍微升高了上步,研究人员在果蝇中已发现了更多的“跳跃基因”,其中有一些看来与发育直接有关。在一群名为复胸复合物的基因里(因它控制昆虫节体的发育而命名)转座已被鉴定具有大量潜在突变的机制,这戏剧性地影响着果蝇的形态学。一种遗传因子从一个座位移到另一个座位能够引起发育指令的改变而形成这样的情况:譬如说,多了一条腿少了一个翅膀,或形成其它突变,多了一个翅膀少了一个复眼。这样,几乎所有与转座联在一起的发育现象都不正常了(玉米的情况也如此)。有些生物学家便开始思考,遗传重排同样是正常的真核生物的发育特征。支持这观点的最有力的证明可能来自对哺乳动物细胞抗体的研究。在许多实验室里,研究人员已经证实过,多种多样抗体分子群体的增殖取决于在发育过程中常规发生的遗传重排。在一篇回顾最新证据的论文中,詹姆斯·夏皮罗写道:

  无须赘述,细胞分裂同调节事件有联系,但我们对这一问题
  的了解实际上等于零,然而现在已清楚那种联系是确实存在的。
  在玉米籽粒里流动的遗传因子控制着那些异乎寻常的模式,这可
  能是典型的正常发育程序,而不再是例外情况了。

  夏皮罗接着又写了另一篇论文。其主要论点之一是强调“麦克林托克及其他研究经典细胞遗传学的,一定要建立基本的背景情况。这样才能从阐明分析DNA顺序和染色体精细结构工艺进展中得到大量数据。”

  麦克林托克从这些支持中得到了鼓励。在最近几年她对她所看到的在转座中所包含的东西更加直言不讳了。一九七八年,她递交给斯塔德勒专题座谈会的题为《迅速重组基因组的机制》的一篇论文,越出了发育的控制和调节这一研究课题,而讨论更普遍出现的重组基因组的固有机制问题。这机制在内部和外面的压力下发挥作用。她回顾了对损伤性的压力作出反应的特定机制的证据。这种压力“能够提供有秩序地操纵基因控制体系的新组成的基因组,同时仍旧保留了那些再次对压力作出反应的因子。”这一演化所包含的东西是很大量的,虽然有些还不清楚。但正如一九八〇年她在一篇论文中所总结的那样:

  毫无疑问,有许多但并非全部生物的基因组是脆弱的,而激
  烈的改变可能以很快的速率发生。这些能导致新的基因组成,使
  基因表达的类型和时间控制发生改变……由于重组基因组的类型
  是由这样的、已知是没有限制的因子所引起的,它们的大量释放,
  继之又稳定下来,就能导致形成新种甚至新属。

  麦克林托克对转座研究的意义已得到了人们的公认。但对她的想象力的更为激进的对抗依然既深又广;许多生物学家把它们当作纯属(如果尚没有失去控制)投机。这样巨大的对传统观念的挑战需要比它们所感觉到的更多的证据。麦克林托克本人对转座的发展顺序的证据,直到今天也只有很少的人懂得。至于她的关于对压力所作的遗传反应固有机制的论点,懂得的人就更少了。继续有一些人贬低她、取笑她。对他们来说,“麦克林托克主义者”成为不科学的代名词。

  尽管如此,甚至怀疑论者也必须承认:基因组不是一个静态的实体,而是一个处于动态平衡状态中的复杂结构。转座因子——全都有同样的结构组织——是高等和低等生物所共有的一种特征。它们既非无定局也不是孤立的现象。正如加利福尼亚大学的梅尔文·格林在戴维斯所说的,“它们无处不在,在细菌里、在酵母里、在果蝇和植物里。很可能甚至在小鼠和人身上。”但是,正因为它们包括了遗传机制、发育和进化等内容,所以依然是一个不断争论的题目。


应天故事汇(gsh.yzqz.cn)
上一页 回目录 回首页 下一页