首页 -> 2009年第1期
高中数学课程标准对学生数学素养的要求
作者:苏洪雨 吴周伟
观察自己的教室,说出观察到的点、线、面之间的位置关系,并说明理由。
那么,必要的数学知识就是关于空间立体几何的基本定理。
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
一个平面过另一个平面的垂线,则两个平面垂直。
……
在具备一定的数学知识的基础上,必要的基本技能也有助于学生在数学上进一步发展。技能包括快速且准确地进行计算,逻辑地进行数学的基本论证。《标准》认为,随着时代的发展,数学课程要重新审视“双基”。
数学双基赋予学生知识和技能,但是进行数学地理解是一个必不可少的过程,只有理解了,学生才能认识到数学思想方法的重要性,才能在实践中应用数学思想方法解决问题。理解数学就要领会数学概念的内涵,了解数学公理、定理的本质和背景,通过进行数学探究、发现学习、再创造等过程,掌握数学思想方法,不断深化数学的理解。
掌握数学思想方法,是指掌握蕴含在数学知识和技能中的精髓。富兰克林在18世纪中叶提出过:“可惜知识是无穷的,而学生的时间却是有限的。”事实上,在学生离开课堂,走入社会,如果不是从事和数学紧密相关的行业,真正记住的数学知识并不多,但是一些重要的数学思想方法却让他们难以忘却,在自觉与不自觉中,归纳、演绎、类比、分析、综合等逻辑推理都得到了运用。《标准》在课程的基本理念中强调:使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。
2.提高基本数学能力,逐步培养数学意识
如果把数学知识和技能看作植物的根部,也就是数学素养的发展基础,那么,数学能力应该是植物的主干,在数学能力的支配下,学生才可以进行各种数学活动,同时结合重要的数学思想方法,学生可以合理地利用数学解决问题。我国在以往的数学教学大纲中有运算能力、逻辑推理能力和空间想象能力之说,后来又加上了运用数学知识分析和解决实际问题的能力。在社会发展的新时代,《标准》与时俱进,在原来的基本数学能力上,新增了抽象概括能力和数据处理能力。在一般能力上,除了数学地提出、分析和解决问题(包括简单的实际应用问题)的能力,还增添了数学表达和交流的能力,独立获取数学知识的能力。在课程的基本理念中,强调注重提高学生的数学思维能力,其中包括:直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维能力。
《标准》认为,学生数学能力的获得在提高自主学习、实现可持续发展中至关重要。数学能力是学生数学素养形成的重要因素,它可以通过了解学生对知识的掌握和运用水平体现出来。学生数学能力是在数学知识建构和问题解决过程中逐步获得的。例如可以从课堂数学学习、数学探究和建模活动中,培养学生发现问题和提出问题的能力;再者通过联系相关的数学知识,提出问题解决的思路,建立恰当的数学模型,尝试解决问题,培养学生有效的收集信息的能力。在这些过程中,要训练学生独立思考,和他人合作交流,清晰的数学思想表达能力。
数学意识是学生在数学学习和进行数学问题解决过程中逐步发展起来的。《标准》要求,发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。例如在学习计数原理、统计案例、概率等内容中,学生要“能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。”再如在“数学建模”过程中,学生将体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;激发学生学习数学的兴趣,发展创新意识和实践能力。
3.树立良好数学信念,体会数学文化价值
良好的数学信念在学生学习数学,形成数学素养过程中起着积极的推动作用。数学信念会影响学生的学习和学习成果,包括他们对数学之认识、理解和表现。《标准》要求:提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。数学信念就是学生对数学的情感态度问题。著名的数学家华罗庚教授认为:“就数学本身来说,也是壮丽多彩,千姿百态,引人入胜的。一个问题想不出来时,固然有些苦恼,若一旦豁然想通,那滋味难道不是甜蜜蜜的,这和音乐,舞蹈艺术的享受有何不同?”《标准》制定者指出:对学习产生兴趣,树立学好数学的信心,是学生和未来公民应该具备的一种重要素质,……同其他学科相比,数学课程的学习更需要一点精神,需要锲而不舍的钻研精神,需要有克服困难的意志力和决心,因而数学课程也就成为我们培育学生具备这种精神和态度的很好的载体。《标准》建议可以从教材的编写,案例的引入等方式来激发学生数学学习兴趣,培养学生良好的数学信念。
数学是人类文化的重要组成。在新课程中,尤其重视数学文化的教学。数学文化、数学探究和数学建模贯穿于整个高中数学课程,渗透在每个模块或专题中。《标准》希望学生通过在高中阶段数学学习,初步了解数学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值,开阔视野,寻求数学进步的历史轨迹,激发对于数学创新原动力的认识,受到优秀文化的熏陶,领会数学的美学价值,从而提高自身的文化素养和创新意识。
例如在学习导数及其应用的内容时,希望学生体会导数的思想及其丰富内涵,感受导数在解决实际问题中的作用,了解微积分的文化价值。再如,在二项式定理中介绍我国古代数学成就“杨辉三角”,在统计案例中介绍所学统计方法在社会生活中的广泛应用,以丰富学生对数学文化价值的认识。
三、 总结
在《标准》看来,数学素养是学生在数学学科上的综合素质。国际教育成就评价协会(IEA)在TIMSS 2003测试中,从对基本事实和过程的了解、概念的使用、解决常规问题和说理四个不同的认知水平层次对学生的能力进行测评。而国际学生评价项目PISA认为:数学素养是一种个人能力,学生能确定并理解数学在社会所起的作用,得出有充分根据的数学判断和能够有效的运用数学。这是作为一个有创新精神、关心他人和有思想的公民,适应当前及未来生活所必须的数学能力。对照三者,其实有着很多类似的地方,数学素养就是学生在数学问题情境中,应用数学的过程所表现出来的数学能力、数学信念,也包含着数学思想方法的运用,对数学的欣赏,体会其价值等。数学素养的这些元素相互联系,不可分割;反之,学生在数学知识技能、数学能力等的发展对培养学生的数学素养也有着至关重要的影响。
《标准》对学生在数学上的表现提出了一个整体性的要求,这对于学生的发展数学素养有着积极的意义,同时也为我们的数学教学提供了一个明确的方向,而对教师来说也提出了更高的要求。
参考文献
[1] 中华人民共和国教育部. 《普通高中数学课程标准》(实验).北京:人民教育出版社,2003,4.
[2] “MA”课题组.“发展学生数学思想,提高学生数学素养”教学实验研究报告.课程·教材·教法,1997(8):35~39.
[3] 王子兴.论数学素养.数学通报,2002(1).
[4] 朱德全.数学素养构成要素探析.中国教育学刊.2002,49~51.
[5] 严士健等.普通高中数学课程标准解读.南京:江苏教育出版社,2004.2.
[6] 解恩泽,徐本顺主编.数学思想方法.济南:山东教育出版社,1989,11.
[7] 王林全.中学数学思想方法概论.广州:暨南大学出版社,2000,10.
[8] 张奠宙.中学数学中的文化涵义.宁波:教育部数学教育高级研讨班发言稿,2007.4.
[9] 郑毓信.数学文化学.成都:四川教育出版社,2001.11.
[10] 上海中小学课程教材改革委员会.数学.(文科高中三年级).上海:上海教育出版社,2004.8:26.
[11] 布鲁纳.邵瑞珍译.教育过程.北京:文化教育出版社,1982.6.
[12] 黄毅英.数学观研究综述.数学教育学报.2002(11).
[13] 华罗庚等.数学家谈怎样学数学.哈尔滨:黑龙江出版社,1986.9.
[14] 江春莲.TIMSS系列研究简介(1).数学通讯,2006(9).
[15] 黄惠娟等.PISA:数学素养的界定与测评.上海教育科研,2003(12).
(责任编辑刘永庆)
[1]