首页 -> 2009年第1期
高中数学课程标准对学生数学素养的要求
作者:苏洪雨 吴周伟
那么,具体来说,《标准》对培养学生数学素养提出哪些要求?这些要求对于数学课程的发展和数学教学有着怎样的影响?在学校数学教育中,如何结合教学实践培养学生的数学素养?
一、 数学素养的内涵
关于数学素养,人们有着不同的理解和认识。“MA”课题组(1997)认为,数学素养是指以人的先天生理特点为基础,在后天的环境和数学教育影响下形成并发展的心理方面的稳定属性。王子兴(2002)认为,数学素养是数学科学所固有的内蕴特性,是在人的先天生理基础上通过后天严格的数学学习活动获得的、融于身心中的一种比较稳定的状态,……是一种心理品质。朱德全(2002)认为数学素养的生成是个体在已建立数学经验基础之上对数学感悟、反思和体验的结果。在《普通高中数学课程标准解读》中,数学素养是一种基本的文化素养,……基础教育数学课程的基本目标就是要提高学生的数学素养。由此,我们发现,上述的认识(包括标准),都把“数学素养”作为一种“人们内隐的、逐步形成的”能力、素质或者修养,它是一种学生在数学方面的抽象的综合表现。《标准》认为高中数学课程是培养学生素质的基础课程,提高学生的数学素养可以从六个方面进行:数学双基、数学思想方法、数学能力、数学意识、数学信念和数学文化。这六个方面是紧密相连,互不分割,共同发展;通过具体的数学内容,在问题情境中展现出学生的数学素养。因此,我们可以用一个图形来表示他们彼此的关系。(如图1所示)
1.数学双基
数学双基包括:数学基础知识和基本技能。知识和技能是学生在数学上发展和进步的土壤,依托数学知识,掌握基本的技能,才能培养学生的数学能力、数学信念,了解和理解数学思想方法,从而体验数学文化的无穷魅力。
2.数学能力
数学能力是学生在进行数学活动的过程中,逐步形成的一种心理特征。《标准》认为在高中阶段,数学能力包括空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力,以及数学地提出、分析和解决问题(包括简单的实际应用问题)的能力,数学表达和交流的能力,还有独立获取数学知识的能力。数学能力是数学素养的重要组成部分,当人们进行相关的数学活动时,数学能力就外显出来。培养学生的数学能力也是数学教育的一个重要目标,如果把知识和技能看作学生发展的基石,那么数学能力将是帮助学生解决问题的助推剂。
3.数学思想方法
数学思想方法是指关于数学自身的论证、运算以及应用的思想、方法和手段,除此之外,还包括关于数学(其中包括概念、理论、方法与形态等)的对象、性质、特征、作用及其产生、发展规律的认识。同一个数学思想,当用它去解决别的问题时,就称之为方法,当评价它在数学体系中的自身价值和意义时,就称之为思想。数学知识是数学学习过程中的载体,而技能是处理知识的基本操作过程,但是蕴含在知识和技能之中的就是重要的数学思想方法。
4.数学意识
我们把应用数学的意识和创新意识称之为数学意识;也可以说,这是对数学的一种感觉。在生活实践应用数学过程中,有的人可以熟练地运用数学思想方法和数学工具,有的却只能就事论事,不能从数量关系或者空间位置中发现问题的本质,两者不同的表现就是数学应用意识的不同。再者就是创新意识,在学习数学和应用数学过程中,善于发现其中的数学模式,尝试使用不同的数学方法解决问题,从思想和观念上开拓创新,这就是创新意识。
5.数学信念
数学信念也可以称之为数学观,就是对数学的基本看法,数学是什么?有用的,没用的?有趣的,还是枯燥的?学生有没有学习数学的信心和毅力?等等。这都是关于数学信念的问题,同时这也是数学素养的重要组成部分。
6.数学文化
数学是一种文化,张奠宙先生认为,“数学文化在特定的社会历史下,数学团体和个人在从事数学活动时,所显示的民族特征、传统习惯、规则约定、以及思想方法等的总和。”郑毓信先生指出:“数学作为文化的特殊性在于数学对象的形式建构性与数学世界的无限丰富性和秩序性”。《标准》对数学文化有这样的阐述:“数学是人类文化的重要组成部分。数学是人类社会进步的产物,也是推动社会发展的动力。”学生的数学素养不仅体现在数学地解决问题、良好的数学意识以及正确的数学信念,还体现在能够欣赏数学的价值,展示一定的数学文化气息。
二、 标准对数学素养的要求
数学素养是一种个人蕴含的内在品质或者能力,《标准》没有对数学素养提出直接的要求,正如图1,我们希望这棵树苗能够茁壮成长,但不能对这个树苗提出什么要求。《标准》认为,高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用,也是学习其他学科的基础,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。
《标准》对学生在数学方面的最终目标是:希望学生能够提高必要的数学素养。这是一种综合性的要求,这种综合性的要求可以在学生面对现实情境,运用数学处理问题时,得到检验。例如。
一家汽车公司与某出口商定了一个合同:在一段相当长的时间内,每天至少把60辆汽车运到指定的港口,准备出口。公司使用A和B两种类型的运输车,A型运输车能装运10辆汽车,B型运输车能装运8辆汽车。现在公司有4辆A型运输车和6辆B型运输车,但只有8个司机能工作。如果运输车每天只能运一次,那么每天最多能运多少辆汽车?每天最少需要多少个司机?面对这样的问题,学生要有一定的数学意识,不仅能从情境中抽象概括出数学语言,还要寻找蕴含的数学模式,应用适当的数学思想方法解决问题。当然,这一切都离不开数学的基础知识,也不能脱离基本的数学技能。在解决类似问题的过程中,学生逐步建立数学信念,体验数学文化。
1.获得数学知识技能,掌握数学思想方法
数学基础知识和数学基本技能是培养学生数学素养的载体,在进行数学双基的教学过程中,不断渗透数学思想方法;通过处理各种和数学相关的问题,培养学生的数学能力,进而提高数学意识和文化修养。因此,《标准》指出,获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中的数学思想和方法,以及它们在后续学习中的作用。
[2]