首页 -> 2007年第2期
利用数学建模培养高职学生的数学应用能力
作者:李宏平
结合专业,提高学生应用数学的能力
在“数学建模”课程中,除介绍一些社会或经济中的数学应用问题外,还要根据不同专业对数学的应用水平及方法的不同要求,总结数学应用的内容、方法的差异性,找到各专业与数学的结合点,用具体的专业例子,归纳应用数学的各种模型,并以此为例,培养各专业学生应用数学的兴趣。一般来讲,对一个专业问题,要建立一个数学模型,就必须了解专业上的一些规律和经验,提出许多与量有关的合理假设。根据专业知识,利用规律,通过一些数学方法,如微元法等,列出等式,即可建立一个数学模型。建立了数学模型,就找到了实际问题的规律及解释方法。数学模型可以表现为专业公式或定性结果等。有了这样的初步认识,学生就可以知道,要想建立模型,首先,要进行专业性的实验、调查、分析,得到反映问题本质的量的概念、量之间的关系以及影响结果的一些因素;其次,需分析这些因素之间以何种形式相互影响,是否要利用其他的基础学科,如物理学、力学等的规律,绕开次要因素,简化因素间的影响关系,作出合理简化假设;最后,根据问题的性质如连续型、离散型、随机型、模糊型等,列出数学方程或函数、限制条件等,将专业问题完全转化为一个数学问题,用我们学过的数学方法解决它。例如,在机械专业的《机械设计》中二级圆柱齿轮减速器的传动比最优分配模型为minf(A)=2A(i+i-1+2)/d,其中,A为中心距,d为齿轮分度圆直径,i为等级减速比。该模型根据几何原理即可得出,它是一个一维无约束最小化问题d。在实际教学中,有许多专业问题学生都能够利用所学的专业知识和数学知识建立数学模型,这样既复习了所学数学知识,又提高了解决专业实际问题的能力。
总之,数学建模解决问题的实质是学生运用数学的思想、观点、方法等与客观世界相互作用,最终达到解决实际问题为目的的创造性活动。建模的整个过程是数学应用能力的综合体现,也为培养学生这方面的能力提供了一个有益的途径。
参考文献:
[1]唐焕文,贺明峰.数学模型引论(第2版)[M].北京:高等教育出版社.2001.
[2]徐全智,杨晋浩.数学建模[M].北京:高等教育出版社,2003.
作者简介:
李宏平(1962—),湖南科技职业学院公共课部主任,副教授。
(本文责任编辑:周秀峰)
[1]