首页 -> 2007年第2期

利用数学建模培养高职学生的数学应用能力

作者:李宏平




  摘要:数学是一门应用广泛的学科,加强学生应用能力的培养是高等数学课程教学的重点之一。数学模型是沟通实际问题与数学工具之间的桥梁。利用数学建模可提高学生学习数学的兴趣,培养学生运用数学的能力。
  关键词:高职;数学模型;应用能力
  
  数学最显著的特点之一就是其应用极其广泛。在我们日常生活中随处都能找到数学的影子。在社会生活的各个领域,都在运用着数学的概念、法则和结论。很多看似和数学无关的问题都可以运用数学工具加以解决。但很多高职学生由于基础薄弱,学习数学的兴趣不高,不知道数学有什么用途,他们认为数学是枯燥无味的,学习数学就是为了应付考试。而现在数学素养已成为公民文化素养的重要内容,更是大学生不可或缺的基本素质。高等数学教学一个很突出的方面就是培养学生的应用能力。数学模型是沟通实际问题与数学工具之间的桥梁,建立和处理数学模型的过程,实际上就是将数学理论知识应用于实际的过程。本文拟就数学模型在教学中的应用作粗浅探讨。
  
  重视知识应用过程,提高学生学习数学的兴趣
  
  学生能否对数学产生兴趣,主要依赖于教学过程,与教学内容和教学方法的选择和应用密切相关。因此,教师必须在教法和学法指导上多下工夫,狠下工夫,从数学应用的角度处理数学、阐释数学、呈现数学,以提高学生的数学理论知识和操作水平;必须加强数学应用环节的实践,注重用数学解决学生身边的问题,用学生容易接受的方式展开数学教学,注重学生的亲身实践;必须重视在应用数学中传授数学思想和方法,把培养学生解决实际问题的能力作为教学内容的主线,运用“问题情境—建立模型—解释与应用”的教学模式,多角度、多层次地编排数学应用的内容,有效地激发学生的学习兴趣。
  例1:7只茶杯,杯口全部向上,每次翻转其中的4只(杯口向上的变为杯口向下,杯口向下的变为杯口向上)。能否经过有限次的翻转,使得7只茶杯的杯口全部向下?
  分析:将7只茶杯用字母分别表示为A1、A2、…A7,茶杯的杯口朝上记为Ai=+1,杯口朝下记为Ai=-1(i=0,1,2,…7),每次翻转改变其中的4只杯子的杯口方向,相当于7个字母中的4个字母取值改变符号,即相当于将其中4个字母各乘以-1。
  问题归结为:已知7个字母A1、A2、…A7,在开始时全部取值为+1,每次改变其中4个字母的符号,经过有限次后能否将7个+1变为7个-1?
  解析:考察经过第i次翻转的7个字母的乘积Mi=A12…A7,开始的时候相当于7个字母取值全为+1,它们的积M0=A12…A7=(+1)7=+1;经过一次翻转后,M1=A12…A7=M0(-1)4=+1;经过两次翻转后,M2=A12…A7=M1(-1)4=+1;……所以不论经过多少次翻转,7个字母的乘积保持不变,仍为+1。另一方面,杯口全部朝下,相当于7个字母全部取值为-1,它们的乘积是-1。这就表明,经过有限次的翻转,7个+1绝不会变为7个-1。因此,经过有限次的翻转,不能使7只茶杯的杯口全部朝下。
  例2:某人第一天上午8点由山下出发,下午15点抵达山顶;第二天上午8点由山顶出发按原路返回,并于下午15点回到山下原出发点。问在两天的行程中是否存在这样一个点,该人经过这个点时,两天的手表指向同一时刻?
  分析:这个问题初看起来不容易得到答案。我们可以换一个角度思考,把该人在两天中做的事改到同一天中来做,设想将这个人再“克隆”出一个人来,上午8点该人由山下出发,而“克隆人”同时由山上出发,由于走的是同一条路线,因此该人与其克隆人必定在中途相遇,在相遇点处,则手表指向同一时刻。
  下面用数学工具证明。该问题与行走的路线长度、形状无关,不失一般性,不妨设行走的路线是线段AB,设行走的时间t是位置x的连续函数。
  第一天,A→B,设t=f(x),A≤x≤B,且f(A)=8,f(B)=15;第二天,B→A,t=g(x),A≤x≤B,且g(A)=15,g(B)=8。
  问题归结为:已知连续函数f(x)、g(x),A≤x≤B,且f(A)=8,f(B)=15;g(A)=15,g(B)=8。求证:存在点x0∈[A,B],使得f(x0)=g(x0)。
  证明:设H(x)=f(x)-g(x)A≤x≤B,则H(x)也是连续函数,且H(A)=f(A)-g(A)=8-15<0,H(B)=f(B)-g(B)=15-8>0,因此存在x0∈[A,B],使得H(x0)=0,即f(x0)=g(x0)。
  通过趣味数学应用的案例分析与数学建模,体现了数学应用的广泛性,在一定程度上帮助学生看到数学生动、有趣、甚至好玩的一面,以丰富数学学习的内容,提高学生学习数学的积极性、主动性、探索性。
  另外,课堂教学中应充分发挥学生的主体作用和教师的主导功能。教师可根据教学内容的特点,精心组织、科学设计,把抽象的概念、深奥的原理,寓于生动、有趣的典故、发现史中,适当、合理地运用图片、模型、多媒体教学等手段,促进理论与实际的有机结合,使学生产生浓厚的学习兴趣。只有当学生有了学习兴趣,思维达到“兴奋点”,才能带着愉悦、激昂的心情去面对和克服一切困难,执着地去比较、分析、探索认识对象的发展规律,展现自己的智能和才干。这无疑是让学生体验成功的重要举措,更是提高学生数学兴趣的有效途径。当学生应用数学知识去解决了一个个实际问题,他们的学习兴趣必将被更进一步地激发起来,成为进一步学习的内驱力。
  
  通过“数学建模”活动和教学,培养学生运用数学的能力
  
  培养学生数学应用能力是高职数学教育的根本任务,是数学教学目的中的重要内容。数学应用能力是一种综合能力,它离不开数学运算、数学推理、空间想象等基本的数学能力。应把应用问题的渗透和平时教学有机地结合起来,循序渐进。在数学应用意识和能力的培养中,应特别重视学生探索精神和创新能力的培养,把数学应用问题设计成探索和开放性试题,让学生积极参与,在解题过程中充分体现学生的主体地位。在运用数学知识去解决实际问题时,首先要建构实际问题的数学模型,然后用数学理论和方法找出结果并用于实际,这样既可解决实际问题,又能促进数学新思想、新理论的建立和发展。因此“数学建模”是沟通数学理论与实际的中介和桥梁,培养学生“数学建模”能力是培养学生数学思维和应用能力的重要手段,在教学过程中穿插建模能力训练对学生是十分必要的。培养学生建模能力是一个循序渐进的过程。开始应从简单问题入手,师生共同创建模型,引导学生初步掌握应用数学形式建构模型的方法,培养学生积极参与和勇于创造的意识。随着学生能力和经验的增加,可通过实习作业或小组活动的形式,由学生展开分析讨论,分析每种模型的有效性,提出修改意见,讨论是否有进一步扩展的意义。这样可以纠正学生理解上存在片面性的问题,在不断发展、不断创造中培养信心。虽然高职学生的数学基础知识对于某些数学模型的建立略显不够,但只要花很短的时间补一下,还是可以解决问题的,关键是培养学生如何将所学数学理论与实践相结合的能力。
  

[2]